Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 1, 2026
- 
            Abstract Solar active regions (ARs) contain a broad range of temperatures, with the thermal plasma distribution often observed to peak in the few millions of kelvin. Differential emission measure (DEM) analysis can allow instruments with diverse temperature responses to be used in concert to estimate this distribution. Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) observations are uniquely sensitive to the highest-temperature components of the corona, and thus extremely powerful for examining signatures of reconnection-driven heating. Here, we use NuSTAR diagnostics in combination with extreme-ultraviolet and soft X-ray observations (from the Solar Dynamics Observatory/Atmospheric Imaging Assembly and Hinode/X-Ray Telescope) to construct DEMs over 170 distinct time intervals during a 5 hr observation of an alternately flaring and quiet active region (NOAA designation AR 12712). This represents the first HXR study to examine the time evolution of the distribution of thermal plasma in an AR. During microflares, we find that the initial microflare-associated plasma heating is predominantly heating of material that is already relatively hot, followed later on by broader heating of initially cooler material. During quiescent times, we show that the amount of extremely hot (>10 MK) material in this region is significantly (∼2–4 orders of magnitude) less than that found in the quiescent AR observed in HXRs by FOXSI-2. This result implies there can be radically different high-temperature thermal distributions in different ARs, and strongly motivates future HXR DEM studies covering a large number of these regions.more » « less
- 
            The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available